The LOLITA user-definable template interface

Marco Costantino
Laboratory for Natural Language Engineering
Department of Computer Science, University of Durham
Durham, DH1 3LE, U.K.
Tel. 444 20 8932 2178, Fax +44 20 8932 1278
marco@advanced-finance.com

March 4, 2001

Abstract

The development of user-definable templates interfaces which allow
the user to design new templates definitions in a user-friendly way is
a new issue in the field of information extraction. The LOLITA user-
definable templates interface allows the user to define new templates
using sentences in natural language text with a few restrictions and
formal elements. This approach is rather different from previous ap-
proaches to information extraction which require developers to code
the template definitions directly in the system.

After describing LOLITA as a general purpose base NLP System
and other approaches to user-definable template interfaces that could
be taken, the paper describes the design and the implementation of
the LOLITA user-definable template interface. The performance of
the interface is evaluated comparing the results with those produced
by pre-defined financial templates produced by the LOLITA System.

Keywords: Natural Language Engineering, Information Extraction,
User-definable template interfaces.

1 Introduction

Most of information extraction systems have been designed and tested with-
in government agencies and the scientific community and very few real ap-
plications have been commercially successful. The emphasis has been on
the improvement of the performance of the systems in terms of precision
and recall. However, little progress has been done in making the systems
user-friendly.

One of the main criticism that can be made to many of the existing
information extraction systems is that the users can’t configure the systems
to produce results (templates) which differ from those already available in
the system. The templates are usually coded within the system and the user
cannot modify the existing templates or add new ones without having to in-
tervene directly on the system’s code. For scientific competitions such as the
MUC conferences [DAR, 1991], [DAR, 1992],[DAR, 1993],[DAR, 1995] this
may be acceptable, but for real applications such as a financial application
this problem is very relevant. With the advent of the first systems focusing
on information extraction from the Internet (e.g. [Cho et al., 1999]), the
issue is becoming more relevant.

The lack of flexibility of the current information systems has been also
identified in the TIPSTER phase II project document [Grishman, 1995], in
which it is hoped that future systems will allow the definition of custom
templates by the end-user. The document also defines specific standard ob-
jects and classes for the development of standardized components within a
customizable information extraction system. The TIPSTER phase II docu-
ment defines three different classes of objects for a customizable information
extraction system:

e ExtractionNeed. This class should contain the input definition of
the user, consisting of a formal specification (e.g. the template and
slot names) and a narrative description describing the slot fill rules
(e.g. the MUC-5 slot fill rules). This should be then translated by the
system obtaining the CustomisedExtractionSystem.

e CustomizedExtractionSystem. This class should contain the system-
specific procedures for extracting the user-defined templates from the
source texts. These procedures should be created employing specific
operations available in Customised ExtractionSystem.

e TemplateObjectLibrary. This class should contain the system-

specific rules for general concepts which might be used in the user’s
definitions of the templates such as person, company etc.

Although the architecture proposed in the TIPSTER phase IT document
does not describe how the user-definable systems should be implemented, the
document represents a first step towards the development of a customizable
information extraction system.

The Hasten system, which successfully participated in the MUC-6 com-
petition [Krupka, 1995], is a first example of a partially-customizable in-
formation extraction system. The interface is based on example-patterns
corresponding to relevant fragments of source texts which can be entered
by the user and will be used for producing the templates. Although the
interface presents the advantage of allowing the user’s definition of the slots,
few problems arise in the definition of a new template:

e the template definition is still coded in the system. The user is allowed
to enter slot definitions for the templates already coded in the system,
but the definition of new templates must be done by modifying the
system’s code.

e the user is required to enter a considerable amount of example pat-
terns for the definition of each slot. However, the problem is mainly
caused by the fact that the system is based on pattern-matching tech-
niques which require a considerable amount of patterns. For example,
the total number of egraphs (Hasten’s patterns) needed to define the
MUC-6 management template [DAR, 1995] was 132 [Krupka, 1995].

This work presents the LOLITA user-definable template interface, which
allows the end-user of the system to enter new template definitions using
natural language sentences with few restrictions and formal elements

The work is organised as follows. In section 2 we briefly discuss the
main features of the LOLITA System. In section 3 we discuss the differ-
ent approaches which can be taken for designing a user-definable template
interface, while in section 4 we present the design and implementation of
the LOLITA user-definable template interface. Finally, in section 5 we e-
valuate the results of the takeover template produced by the user-definable
template interface, comparing the results with those produced using a pre-
defined LOLITA takeover template.

Natural language
text

\/\

— Semantic Pragmatic
7 anaylsis analysis
B
Inference Generator
— SemNet

Figure 1: The LOLITA system core.

2 The LOLITA System

LOLITA (Large-scale Object-based Linguistic Interactor Translator and Anal-
yser) has been designed as a general purpose natural language processing
system and has been under development at the University of Durham for
the last nine years [Garigliano et al., 1993].

The approach taken for designing and implementing the system follows
the lines of natural language engineering rather than those of computational
linguistics. The NLE approach emphasises the following aspects of engineer-
ing that should be considered when building a NL system: scale, feasibility,
robustness, maintainability and usability [Garigliano, 1995].

The LOLITA system is written in the functional programming language
Haskell (currently about 45,000 lines of code, corresponding to about 450,000
lines of code in an imperative language) and based on a large, WordNet-
compatible semantic network, SemNet, (over 100,000 nodes), similar to a
conceptual graph [Sowa, 1984]. Its core, being the main part of the system
around which individual applications are built, consists of 8 main modules
(figure 1).

The semantic network consists of a hierarchy of nodes (concepts) con-

nected with arcs. The nodes represent entities (the company) and events
(The company made losses), while arcs represent relations (A company IS A
business). Each node also has an associated set of control variables. There
are about 50 different control variables. Some of the control variables are:

e Rank. This control gives the nodes quantification, i.e. individual, (the
loss Company XY made in the first quarter of ’94), universal (every
loss), generic (losses, or some lofsses), existential, bounded existential
etc.

e Type. This control value is very similar to grammatical qualification
with few exceptions and additions: entity, relation, typeless, event,
fact, greeting etc. The relation type mainly represents verbs, attribute
represents adjectives and entity represents nouns.

e Family. This control groups nodes into the semantic “families”, eg.
living, animal, human, man-made, abstract, location, organisation,
human-organisation etc. [Garigliano et al., 1993].

Concepts are linked with arcs such as specialisation_ (and its inverse,
generalisation_), or instance_ (inverse universal_). Specialisation links
a set to a possible subset. For example, the concept of “company” is a
specialisation of the concept of “business” which is a specialisation of the
concept of “enterprise”. The specialisation_ (generalisation) link can be
therefore used to specify hierarchies of concepts.

The instance_ link allows to connect a concept to an instance of that
concept. For example, the node corresponding to the organisation “AL-
PHA” in the sentence “ALPHA bought BETA” will be connected with
a universal_ link to the set of all organisations, of which ALPHA is an
instance.

These mechanisms allow the network to contain an elaborate “knowledge
base” (i.e. encyclopedic “world” knowledge, linguistic knowledge) which can
be expanded via the natural language interface that is part of the system.

Input natural language text is processed by various hierarchic modules
and the result stored in the semantic network. The main processing phases
are: morphology, parsing, semantics and pragmatics (figure 1).

¢ the morphology module is responsible for splitting the input text
into words and smaller units and producing for each word a list of
possible meanings of that word combined with their syntactic (noun,

verb etc.) and semantic categories. The input is then passed to the
parser;

e the parser determines the syntactic information contained in the
source text. It performs a full grammatical analysis of the input text,
recognising the role of each word in the sentence (e.g. subject, ver-
b, adjective, object etc.). At this stage, the meaning of each of the
words in the sentence can be still ambiguous and will be resolved by
subsequent modules. Partial parsing is not currently implemented. If
a sentence fails to be parsed, no result will be passed to the semantic
analysis phase;

e the semantic analysis module associates the words with the appro-
priate meaning(s) and maps them onto the system’s internal represen-
tation;

e finally, the pragmatic analysis module performs the disambiguation
of the meaning of the words and type checking. Lexical ambiguities
(e.g. different meanings of the same word) and anaphora are resolved
using a series of preference heuristics, taking into account the topic
which has been set for the current text and the information in the
context.

At this stage, the new knowledge can be stored in the semantic network
and can be subsequently retrieved by the various applications.

To generate natural language output, the relevant part of the semantic
network is fed to the generator component, which is capable of generat-
ing natural language output from the internal representation stored in the
network [Smith et al., 1994]. The output from the generator can be varied
according to a large set of parameters.

Various kinds of applications have been realised around the LOLITA
core including: machine translation from Italian to English, English to S-
panish, Language Tutoring [Wang and Garigliano, 1992], query application
and contents scanning [Garigliano et al., 1993] and financial information ex-
traction [Costantino et al., 1996a].

3 User-definable template interfaces

The goal of a user-definable template interface is to allow the end-user of
an information extraction system to add new templates to the system in a

user-friendly way.

Source article:

FLORHAM PARK, N.J. (AP) — Generic drug maker Schein Pharmaceutical Inc.
will acquire Marsam Pharmaceuticals Inc. for 240 million dollars, the two compa-
nies said.

The agreement calls for Schein to acquire all stock outstanding of Marsam at about
21 dollars a share. In May, Marsam, which makes injectable drug products, dis-
closed it had received unsolicited takeover offers in the range of 19 dollars a share.
On Friday, Marsam shares closed at 19.3125 dollars, down 6.25 cents, in Nasdaq
Stock Market trading.

Template: Takeover
Company target: Marsam Pharmaceuticals Inc.
Company predator: Schein Pharmaceutical Inc.
Type of takeover: FRIENDLY
Value: 240 million dollars

Figure 2: The Takeover template

A generic template such as the takeover template shown in figure 2 can
be represented in the system with the following key elements:

1. the template-name which uniquely identifies the template among
the others in the collection;

2. the main-events of the template, which represent the conditions un-
der which the template has to be instantiated by the system:;

3. the slot-names which uniquely identify each of the slots in the tem-
plate;

4. the slot-rules which are used by the system to identify the relevant
information for each of the slots.

The user-definable template interface will therefore need to allow the
user to define these elements the most difficult ones being the main-events
and the slot-rules. Three different strategies can be taken for the definition
of a user-definable template interface:

A menu-based environment. In this case the user could construct
the templates using pre-defined structures / components available in
menus and using cut and paste techniques.

e A example-based environment. In this case the user would pro-
vide the system with a number of examples of relevant articles or of
relevant articles’ fragments. The system would then extract the rele-
vant patterns which would be used in the extraction of the templates
from the source articles.

e Natural Language Text. In this case the user is allowed to enter
the full specifications for the main-event and each of the desired slots
using sentences in natural language. The system will then translate
this information into the appropriate template rules.

e Interactive Natural Language Definition. In this case the user
would enter the template definitions using sentences in natural lan-
guage. The system, however, would interact with the user to reduce
the number of ambiguities in the template definitions. This could
potentially lead to a dialogue-based definition environment.

Two main paths could be followed defining a menu-driven environment.
A first possibility would be to provide very low-level primitives which could
be employed by the user for the definition of the templates. However, very
low-level primitives would make the environment rather complex and the
user would need to spend a considerable amount of time for designing the
templates. Another possibility would be to provide a high-level structure
with specific objects already defined (e.g. company, person, etc.). The time
needed for entering the template definition would be considerably lower.
However, high-level structures would imply limitations to the expressive
power of the users.

An example-based environment could potentially consist of two differ-
ent situations. In the first case the user would provide examples of rele-
vant articles for a specific template. The system would then automatical-
ly identify the appropriate information. The system developed by Collier
[Collier, 1994, Collier, 1996] is able to process a number of input texts and
recognise the significant similarities between them, identifying a possible
template for the extraction of the most important information.

In the second case, the user would provide some examples of relevant
text fragments for the specific elements of the template, together with ex-
amples of filled templates (e.g. the Hasten MUC-6 System [Krupka, 1995]).

The text fragments and the templates entered by the users would be sub-
sequently used by the system for analysing the source articles. However, in
a pure example-based environment the user would be required to enter a
considerable number of examples (either source articles or text fragments)
which would drastically increase the time needed for the definition of the
template elements. For example, the definition of the MUC-6 management
scenario template using the Hasten system required 132 example patterns
[Krupka, 1995].

Given the limitations of the approaches described above, the LOLITA
user-definable template interface has been designed to accept natural lan-
guage input.

4 The LOLITA user-definable template interface

The LOLITA user-definable template interface has been designed to process
templates definitions in free natural language, using specific formal elements
designed to reduce the ambiguity to the input sentences.

The definition of the interaction way between the user and the system,
which corresponds to the definition of the class of objects “EztractionNeeds”
described in the TIPSTER phase IT document, has been done by analysing
the results of an experiment carried out by potential users of the system.
The test required the potential users to describe a generic takeover template
using sentences in natural language. More specifically, the users were asked
to described the main condition and the specific slot rules. The were the
main aims of the experiment:

e identify how easy is for the user to define the templates using uncon-
strained input natural language text;

e establish how easy it would be for the system to understand such
unrestricted input definitions.

The ultimate target was to identify the optimum compromise between
the two. The analysis of the results suggests that allowing complete freedom
for the user can lead to a difficult situation for both the user and the system:

e the user can find it difficult to express the template definitions using
unrestricted natural language text without the support of any formal
element;

e the unrestricted natural language input can be rather difficult to pro-
cess for the system and a relevant number of ambiguities can be found
in the template definitions. These ambiguities mainly concern with
the resolution of anaphora. In other words, how to resolve the rela-
tions between objects and events in the template-condition and in the
slots (coreference resolution).

Four main styles in the template definitions have been identified in the
experiments carried out:
The use of questions. e.g. What was the cost of the takeover? .
The use of Noun-Phrases. e.g. The cost of the takeover.

The use of statements. e.g. A company acquires another company.

Ll

The use of variables. e.g. Company X acquires company Y.

The use of questions in the definition has not been chosen for the user-
definable interface. This is because the potential users were unable to use
the question for defining all the elements of the templates, but they were
able to express the same definitions using noun-phrases or statements in
place of questions. Allowing the user of questions would have therefore
meant introducing additional ambiguities which could have been avoided.
Noun-phrases and statements have been chosen for entering the template

definitions, depending on the template element to be defined.

The most important characteristic of the user-interface is that it allows
the use of wariables in the template definitions. This drastically reduces
the amount of ambiguities in the definitions. The definition of the slot
“COMPANY_PREDATOR” in the takeover template will therefore be:

Template Condition: V=COMPANY1 acquired V=COMPANY2
COMPANY_PREDATOR: V=COMPANY1

The contents of the slot are clearly defined and no ambiguities arise from
the definition. The same definition without the use of variables could have
been, for example:

Template Condition: A company acquired another company.
COMPANY_PREDATOR: name of the company that is purchasing

Differently from the previous definition, this second definition presents dif-
ficult points for both the system and the user. Firstly, the system would
have to identify the specific company to which the user is referring. This
is not necessary in the processing of the slot definition “V=COMPANY1”,

10

where the system can immediately identify the specific company, which cor-
responds to the variable. Secondly, the user may find it difficult to express
the concept of “company predator” using a natural language sentence, while
the definition of the slot using the variable “V=COMPANY1” is immediate.

Three different variables have been introduced. These variables, formal
elements, have been designed to reduce the amount of possible ambiguities
in the template definitions without reducing the user’s expression power.
The formal elements are:

e the name of the template, which distinguishes the template among
the other templates in the system;

e the template variables, which identify the elements of the main-
events which will be later used in the definition of the slot-rules.

e the slot-names, which identify the specific template’s slots and can
be used in the definition of other slot rules to refer to the information
contained in the previous slots.

The user can enter a new template definition using sentences in natural
language which follow a specific syntax which is here discussed in detail.
Five elements must be entered for defining a user-defined template such as
the takeover template definition shown in figure 3: the template name, the
variables, the main-events, the slot-names and the slot-rules.

The name of the template must be defined using any sequence of capital
letters or numbers according to the following rules:

e the name must start with the string “T=", for example “T=TAKEOVER”;

e the name must be a single word. If more words are necessary, they
must be joined with the character “-”, for example: “T=MARKET-
MOVEMENT?”. The name can be used in the definition of the slots to
refer to the template as a whole.

Similarly, the variable name must be defined as follows:

e the name must be entered in capital letters and starting with the string
“V="_ for example: “V=COMPANY1”, “V=VALUE”, etc.

e the name must be a single word. If more words are needed, they must
be joined with the character “-”, for example: “V=COMPANY-ONE”.

11

Template-name: T=TAKEOVER
Variables: V=COMPANY1 is a company.
V=COMPANY2 is a company.
V=VALUE is money.
Template main-event: V=COMPANY1 acquired V=COMPANY2.
V=COMPANY1 acquired V=COMPANY2 with V=VALUE.
The acquisition of V=COMPANY2 by V=COMPANY1.
The V=VALUE acquisition of V=COMPANY2 by V=COMPANY1.
V=COMPANY1 paid V=VALUE for V=COMPANY2.
V=COMPANY1 acquired a majority stake in V=COMPANY2.
V=COMPANY1 took full control of V=COMPANY2.
Definition of slots:
S=COMPANY-PREDATOR: V=COMPANY1

S=COMPANY-TARGET: V=COMPANY2

S=TYPE-OF-TAKEQVER:
String-fill: HOSTILE T=TAKEOVER is hostile.
String-fill: FRIENDLY otherwise

S=VALUE-OF-TAKEOVER: The cost of T=TAKEOVER.
V=VALUE
S=BANK-ADVISER-PRED: The adviser of V=COMPANY1.

S=BANK-ADVISER-TARG: The adviser of V=COMPANY2.
S=EXPIRY-DATE: The date of expiry of T=TAKEOVER.

S=ATTRIBUTION: The person or the company that announced T=TAKEOVER.
The person or the company who said something about
T=TAKEOVER or said something about S=COMPANY-PREDATOR
or said something about S=COMPANY-TARGET or said
something about S=TYPE-OF-TAKEOVER or said something
about S=VALUE-OF-TAKEQOVER or said something about
S=BANK-ADVISER-PRED or said something about
S=BANK-ADVISER-TARG or said something about EXPIRY-DATE.

S=CURRENT-STAKE-PRED: The stake that V=COMPANY1l owns of V=COMPANY2

S=DENIAL: The person or company who denied T=TAKEOVER
or denied COMPANY-PREDATOR or denied the
COMPANY-TARGET or denied TYPE-OF-TAKEOVER or
denied S=BANK-ADVISER-PRED or denied
S=BANK-ADVISER-TARG or denied S=VALUE-OF-TAKEOVER
or denied EXPIRY-DATE.

Figure 3: The takeover template as defined for the template user-interface.

12

The user must define the variables (give a type) using True-False asser-
tions, noun-phrases are not permitted. A valid definition of a variable is the
definition of the variable “V=COMPANY1” in figure 3.

Once the variables have been defined, the user must enter the template
main-event condition. This is used by the system to decide when the tem-
plate has to be created. The main-template condition must be entered in
the form of a True-Fulse assertion. Noun phrases are not allowed unless
they describe an event. Variables which have been previously defined can
be used in the main-event and can be subsequently employed in the slot
rule definitions to refer to specific information in the main-event. A legal
main-event condition is shown in the takeover template in figure 3.

The next step is the definition of the slot-names, which must be defined
according to the following rules:

e the name must be entered in capital letters and starting with the string
“S=", for example: “S=FIRST-COMPANY”, “S=ATTRIBUTION”
etc.

e 1o spaces are allowed. If more words are needed, they must be joined
with the character “-”, for example: “S=BANK-ADVISER-PRED”.

Each slot-name is associated with one or more slot-rules, which are used
by the system to extract the relevant information from the source documents.
The slot rules can be defined using a noun-phrase describing the information
which has to be extracted for the specific slot. Slot-rules can make use of
the name of the template for referring to the template as a whole. This is
useful if the user wants to refer to the general concept of the template, for
example “T=TAKEOVER”, for the takeover template shown in figure 3.
For example, the following slot from the takeover template shown in figure
3 refers to the name of the template:

S=VALUE-OF-TAKEOVER: The cost of T=TAKEOVER

the slot rules can also refer to the template variables, with the condition
that the variable must have been used in the definition of the main-events,
for example the following slot from the takeover template shown in figure 3:

S=BANK-ADVISER-PRED: The adviser of V=COMPANY1

The slot rules can also refer to the contents of slots which have already
been defined by citing the slot name, for example the following slot-rule
would be legal:

S=BANK-ADVISER-TARG: The adviser of S=COMPANY-TARGET

13

[COMPANY

family_humanOrganisation <————

variable: no

Obj ect_ E1 subj ect_

actlon_

V=COMPANY1

rank_namedInvidual

family_humanOrganisation

templ: templvariable

object

E2lis a) action

subject

V=COMPANY2 |

rank_namedIndividual
family_humanOrganisation

templ: templvariable

Figure 4: The processing of a the variable “V=COMPANY1 is a company.”

4.1 Implementation of the user-definable interface in the
LOLITA System

The way in which templates are filled by the user-definable interface is rather
different from how templates defined in the LOLITA system (e.g. the LOLI-
TA financial templates [Costantino et al., 1996a]) are processed.

The most important difference is that no code describing the templates
rules is available in the system. The user-defined templates are filled by the
system using the inference system which matches the templates definitions
against the knowledge contained in the semantic network and, in particular,
the new knowledge acquired with the analysis of a source article. Therefore,
the inference system identifies entities and events which satisfy the template
rules stored in the semantic network corresponding to the wariables, the
main-conditions and the slot-rules definitions.

The first step taken by the user-definable interface is to process the tem-
plate definitions supplied by the user (“EztractionNeeds”). This corresponds

14

to the operation “Customise (ExtractionNeed)” of the TIPSTER phase II
document [Grishman, 1995]. The template-name, the variables (figure 4),
the main-conditions (figure 5) and the slot rules definitions are processed
and stored in the semantic network.

The inference system will then try to match these questions against
the new information acquired from the processing of a source article. For
example, for the main-event shown in figure 5:

V=COMPANY1 acquired V=COMPANY2

the inference system will recognize that an event such as:
Fiat purchased Renault

is a relevant one, because of the fact that the action is compatible with
“acquire” and the subject and object can be matched against the variables
“V=COMPANY1” and “V=COMPANY2".

Figure 6 shows the representatino of the main-event and the candidate
event “Fiat bought Renault”. The inference system tries to match each of
the components of the candidate event onto the main-event.

The inference system will therefore look for an event which satisfies the
following condition:

3 V=COMPANY1, V=COMPANY?2. Acquire(V=COMPANY1,V=COMPANY2)

Once the candidate events have been identified, these can be used by the
inference system for searching for concepts which match the slot rules.

Inference and the variables

The variables are filled in by the inference system as part of the process-
ing of the main-events. Therefore, specific calls to the inference system for
locating information which corresponds to the variables is not necessary.

Inference and the slots

The slot-rules definitions entered by the user can be subdivided into two
different categories:

e rules which refer only to a specific variable used in the main-event, for
example:

15

(cOMPANY)
object
family_humanQOrganisation & El
action_
Y,
object__
E2(is a) action
subject
[V=COMPANY2)
rank_namedI ndividual ob J ect

subject_
-

-

V=COMPANY1 |

rank_namedindividual
family_humanOrganisation
Ganpl: templvariable

—

family_humanOrganisation

templ: templvariable)

acquire

action_

subject_

M ain-event

status : wh_question

Figure 5: The processing of the main-event “V=COMPANY1 acquired

V=COMPANY2.

16

COMPANY
object_ subject_
family_humanOrganisation |~ — El <

variable: no action

i FIAT]

rank_Namedindividual

V=COMPANY1

rank_|ndividual

family_humanOrganisation

templ: templvariable faamily_humanOrganisation

T
| ! l
VT I
_ T | ! I
| |
| ! !
object_ | |
| |
| ! l
E2(is a) action subject_ | | subject_ :
|
I |
subject_ | ! |
| |
| ! l
V=COMPANY2 | I !
rank_Individual object_ _ | I) !
family_humanOrganisation acquire <— T —_ - - = bought| action_ I
templ: templvariable R | l
action | | |
i\ - | I
- |
~ | I
~ - | | object_
- |
S~ o | ! |
S~ o Status Wh_questiqn I
~ |
~ |
~ | |
~ - |
~ . I | |
MAIN-EVENT bl [RewauT
- ~
: ~ |rank_Namedindividual '
N faamily_humanQOrganisation l
_______________________ I

I
I
I
ICANDIDATE TEMPLATE
I

Figure 6: Identification of candidate main-events by the inference system.

17

Reuters Holdings yesterday announced that it acquired Teknekron Software Sys-
tems for 125.1 million dollars cash. Teknekron, a software supplier and systems
integrator based in Palo Alto, California with a workforce of 200, had turnover
last year of 38.7 million dollars and pre-tax profits of 8.2 million dollars. Net as-
sets at the end of 1992 were 3.6 million dollars. Reuters has 212,000 information
outlets worldwide, including 350 of the latest digital Triarch systems. Under the
deal, which has to clear both the US and UK regulatory authorities, Teknekron
will retain operational control of the company. Two non-executive directors from
Reuters will join the Teknekron board. Teknekron’s management will also benefit
from a stock appreciation plan, similar to a share option scheme.

Template produced by the LOLITA system:

<T=TAKEOVER> :=
S=TYPE-OF-TAKEOVER: FRIENDLY
S=VALUE-OF-TAKEOVER: "Million 125.1 dollar cash. "
S=ATTRIBUTION: "Reuters Holdings. "
S=COMPANY-TARGET: "Teknekron Software Systems. "
S=COMPANY-PREDATOR: "Reuters Holdings. "

Figure 7: An example takeover template produced by the user-definable
template interface using the takeover template definition shown in figure 3.

S=VALUE-0OF-TAKEQOVER: V=VALUE

This kind of slots is filled with the concepts which have already been
identified for the specific variable.

e rules which refer to specific variables, the template-name or other slot-
names but adding additional conditions, for example:

S=VALUE-OF-TAKEOVER: the cost of the T=TAKEOVER

In this case, the inference system will be called again and will look for
any event or entity which matches the slot-rules.

Figure 7 shows the takeover template extracted from a source financial
article. The template has been produced using the takeover template defi-
nition shown in figure 3.

18

5 The performance of the user-definable template
interface

The evaluation of the user-definable template interface is based on an ex-
periment similar to the one carried out for the design of the interface (see
section 4). A total of 14 potential users of the system were asked to describe
a takeover template using the specific syntax of the user-definable interface
(see section 4). Two were the main aims of the experiment:

e evaluate how difficult is for the users to define a template using the
user-definable template interface;

e evaluate the performance of the user-definable templates on a evalua-
tion set articles.

In section 5.1 we discuss the evaluation procedure and the results of the
first evaluation aim, while in section 5.2 we discuss the results for the second
evaluation aim.

5.1 Evaluation of the design and usability of the interface

An heterogeneous group of 14 potential users of the system were asked to
submit the definition of a takeover template following the rules of the user-
definable template interface. The templates could be submitted using a
specific WWW server which included the full description of the task and
the full instructions of how to enter new templates definitions using the
user-definable template interface!. The users were also required to enter the
total time they spent reading the instructions regarding the user-definable
interface and the time spent entering the definition. Figure 8 shows an
example user-defined takeover template submitted by one of the 14 users.
Specific measures have been introduced for the evaluation of the 14 templates
definitions.

5.1.1 The SlotError measure

The first measure, called SlotError, measures the difficulty in entering a
user-definable template and depends on the number of errors in the forms
submitted by the users. The higher is the number of these errors, the more

'The WWW server can be found at: http://www.dur.ac.uk/ des3mc/udeval

19

Template_Name: T=TAKEOVER

Variable_1: V=COMPANY1 is a company

Variable_2: V=COMPANY2 is a company

Variable_3: V=VALUE is money

Main_Event_1: V=COMPANY1 bought V=COMPANY2 with V=VALUE
Main_Event_2: V=COMPANY1 bought V=COMPANY2.
Slot_Name_1: S=COMPANY-PREDATOR

Slot_Rule_1.1: V=COMPANY1

Slot_Name_2: S=COMPANY-TARGET

Slot_Rule_2.1: V=COMPANY2

Slot_Name_3: S=VALUE-0F-TAKEQOVER

Slot_Rule_3.1: V=VALUE

Slot_Rule_3.2: The cost of T=TAKEOVER

Slot_Name_4: S=ATTRIBUTION

Slot_Rule_4.1: The company that announced T=TAKEOVER
Time_Instructions: 15 minutes

Time_Form: 10 minutes

Figure 8: An example submission of a user-definable template.

difficult is for the user to define a template using the user-definable template
interface.

An error occurs when the user defines an element of the template which
cannot be correctly interpreted by the system and leads to a missing or
incorrect template or slot. We therefore compute the total number of slots
wrongly defined by the users and we relate it to the total number of slots
defined. In this way we obtain a measure of the number of slots containing
errors, which will never be filled by the system or will be filled incorrectly,
on the total number of slots defined by the users. This measure, called
SlotErrors is defined as follows:

__ total number of slots containing errors
SlotErrors = total number of slots defined x 100

The 14 templates defined by the users comprised a total of 70 slots. A
total of 4 slots containing errors were found in the templates entered by the
14 users. We compute the measure SlotErrors as follows:

SlotError = % x 100 = 5.71%

20

The SlotError measures shows that the 14 users incorrectly defined the
5.71% of the key information in the templates. We therefore conclude that
the user-definable interface is rather easy to use, since the 14 users were
able to define a template with a very low rate of errors. This appears even
more relevant considering that the majority of the users who entered the
definitions of the takeover template were unfamiliar with natural language
processing, information extraction and user-definable template interfaces.

5.1.2 The average time entering the definitions

The second measure employed for the evaluation of the user-defined tem-
plates is the average time taken by the users in entering the user-defined
takeover template.

Overall, the average user took 15.71 minutes for entering the definition
of a takeover template. We consider this time particularly interesting, since
it refers to users with no prior knowledge of natural language processing,
information extraction and user-definable template interfaces.

5.2 Evaluation of the performance of the user-defined tem-
plates

The performance of the user-definable template interface has been evaluated
scoring the results of the information extracted for the user-defined takeover
shown in figure 3 by the system from an evaluation set of 55 financial articles
(25 relevant takeover articles and 30 non-relevant financial articles). In figure
9 a relevant takeover article from the evaluation set is shown.

The scores have been computed using a modified version of the MUC-6
scoring program which which was released to the developers of the MUC-
6 systems [Chinchor and Dungca, 1995]. The scoring program matched the
templates produced by the system for each article against the corresponding
key templates producing a summary reporting the precision, recall and the

combined ’F’ measure 2.

% Precision, recall and ’F’ measure are standard measures employed in information
retrieval and information extraction to evaluate the performance of a system. Precision
can be thought of as the ratio of the number of relevant documents retrieved to the
total number of documents retrieved [Rijsbergen, 1979]. The MUC precision measure was
adapted for information extraction systems:

correct + (partial . 0.5)
number of actual answers

precision =

Recall is the ratio between the number of relevant documents retrieved and the total

21

Cowie Group, the car leasing and motor trading company, yesterday announced
a big expansion of its bus operations with the 29.9 million pounds acquisition of
Leaside Bus Company, the subsidiary of London Regional Transport (LRT). The
deal, involving a 25.5 million pounds cash payment and 4.4 million pounds to settle
intra-group loans, will enlarge Cowie’s bus fleet from 128 vehicles to more than 600
and is expected to lead to a fourfold sales increase.

"We paid slightly more than we wanted to, but it was worth it for the enormous
growth that it promises,” said Mr Gordon Hodgson, chief executive. The acquisition
follows four months of talks between LRT and Cowie, which has been seeking a
larger stake in the London bus network for more than two years.

At present, the group’s bus and coach operations are dominated by Grey-Green
-acquired 14 years ago - which serves 13 bus routes in London and employs 450
drivers. Leaside, by comparison, has a workforce of about 1,800 and operates 28
routes.

Mr Hodgson, who is meeting Leaside managers today, said he was determined to
introduce private sector efficiency to the business, which last year made profits of
just 607,000 pounds on turnover of 43 million pounds. In the same period, Grey-
Green made profits of 1.6 million pounds on sales of 14.4 million pounds. Cowie

shares fell 3 1/2 p to 218 1/2 p yesterday - a new low for the year.

Figure 9: A relevant article of the evaluation set.

Figure 10 shows the overall results for the 55 articles of the evaluation

number of relevant documents (both retrieved and not retrieved) [Rijsbergen, 1979]. The
MUC recall measure was adapted for information extraction systems:

correct + (partial . 0.5)
possible

recall =

Finally, the ’F’ measure represents a way to combine the precision and recall measures
into a unique value and was first introduced by van Rijsbergen [Rijsbergen, 1979]. The
’F’ measure, as combination of precision and recall, gives a values that falls between them.
The 8 parameter in the ’F’ measure represents the relative importance given to recall over
precision and in the case recall and precision are of equal weight, 8 assumes value 1.0.
The ’F’ measure presents a higher value if precision and recall are more at the center of
the recall-precision graph than if they are at the extremes of it. For example, if a system
has precision and recall both of 50 per cent, the 'F’ measure will be higher than a system
that has recall of 20 per cent and precision of 80 per cent. This is also because the aim of
the formula is to direct developers towards an improvement of both recall and precision.

(8%2+1.0).P.R

F measure = CENEYD

22

Report for the user-definable templates finalEvalUD2:

———————————————————————— e e e e e e e
SLOT POS ACT| COR PAR INC | MIS SPU NON| REC PRE UND OVG ERR SUB
———————————————————————— e e e e e e e
takeover 36 23| 14 0 2] 20 7 0l 39 61 56 30 67 13
companytar 36 23] 11 0 5] 20 7 0] 31 48 56 30 74 31
companypre 35 23] 11 0 5] 19 7 0] 31 48 54 30 74 31
typetakeov 36 23| 14 0 2] 20 7 0l 39 61 56 30 67 13
value 28 4| 4 0 ol 24 0 0|l 14 100 86 0 86
badviserpr 0 ol o0 o0 of o 0 of 0o 0o o 0 O
badviserta 0 ol 0 o0 o o 0 of 0 0o o 0 o
expirydate 0 ol o0 o0 of o 0 of 0o 0o o 0 O
attrib 9 2| 1 0 1] 7 0 0l 11 50 78 0 89 50
currentsta 0 ol 0 o0 o o 0 of 0 0o o 0 o
denial 0 ol 0 0 ol 0 0 ol 0 0 0 0 0
———————————————————————— e e e e e e e
ALL OBJECTS 144 751 41 0 13| 90 21 0l 28 55 63 28 75 24
———————————————————————— e e e e e e e
P&R 2P&R P&2R
F-MEASURES 37.44 46.17 31.49

Figure 10: The final score report for the user-defined takeover financial tem-
plate. The report has been automatically generated by the MUC-6 scorer.
The most important measure on the table is the first F-Measure from the
left, while the other two are weighted towards precision and recall respec-
tively.

set. The final results shows that the system’s overall performance measures

were:

P&R 2P&R P&2R
F-MEASURES 37.44 46.17 31.4
OVERALL PRECISION: 557
OVERALL RECALL: 287

These measures have been compared with the results of the result-
s produced by the pre-defined financial takeover template over the same
set of source financial articles. The pre-defined takeover template rep-
resents a normal LOLITA template. Differently from the user-definable

23

template interface approach, the template definition is coded directly in
the system and the template is filled searching the semantic network for
the relevant information for each of the slots, rather than using the infer-
ence system. The LOLITA financial templates have been fully described in
[Costantino et al., 1996¢, Costantino et al., 1996b, Costantino et al., 1996a,
Costantino et al., 1996d, Costantino et al., 1997]. The performance of the
pre-defined takeover template over the same set of articles is the following:

P&R 2P&R P&2R
F-MEASURES 51.03 57.41 45.93
OVERALL PRECISION: 63%
OVERALL RECALL: 43},

The performance of the pre-defined takeover template is higher than the
equivalent user-defined takeover template. The overall loss of performance
of the user-definable takeover template compared to the pre-defined takeover
template is therefore:

F— Measure user —de finable templates % 100
F— Measure pre—defined templates

37.44
Loss of per formance =100 — £33 % 100 = 26.63%

Loss of per formance = 100 —

The user-defined takeover template presents a loss of performance of 27%
compared to the pre-defined template.

The loss of performance is mainly due to the difference in the way the
user-defined templates are produced by the system. While the main-events
and slot-rules definitions for the pre-defined takeover templates are directly
coded in the system, the equivalent definitions for the user-definable tem-
plate are instead obtained from the analysis of the source text of the tem-
plate definition. This additional step relies directly on the analysis of the
source text performed by the LOLITA core system. If a main-event or
slot-rule definition is not correctly processed by the LOLITA core system,
the user-definable interface will be unable to correctly identify the relevant
information in the source article.

Although the drop in performance (27%) can appear significant at a
first sight, the time taken for the development of both the pre-defined and
the user-definable templates must be taken into account. The pre-defined
takeover template has been defined and coded within the LOLITA System
in a period of time of about 8 months. This period of time included un-
derstanding how to code new template definitions in the LOLITA System,

24

identifying the relevant rules for the takeover template, coding, compiling
and testing the template definition.

Differently, the implementation of the user-defined takeover template,
once the user-definable interface had been coded in the LOLITA System,
required a significantly lower amount of time, which can be quantified in a
total of about half a month.

We can therefore compare the two figures as follows:

time for defining the user—defined takeover template __ 0.5 months x 100 = 6.25%
time for defining the pre—defined takeover template ~— 8 months - 0

The above figures show that defining the takeover template using the
user-definable template interface required a time at least 24 times lower
than for defining the pre-defined template and lead to a loss of performance
of 27%. The figures show that the user-definable templates are a feasible
way of defining new templates within the LOLITA System, and require a
time sensibly lower than for coding the new templates within the system.
The absolute precision and recall figures can appear low. However, it is
important to notice that they were obtained without any specific improve-
ment of the LOLITA knowledge base for the financial domain. In addition,
improvements are currently being carried out on the LOLITA core which
should progressively improve its performance.

6 Conclusions

In this paper we presented the LOLITA user-definable template interface,
which allows the user to easily define new template definitions using sen-
tences in natural language. The evaluation of the interface has shown that
inexperienced users found it very easy to enter new templates definitions
in the limited amount of time of 15.71 minutes. The loss of performance
of the user-defined templates compared to hand-coded coded templates is
justified by the much lower time required for defining a template. The ap-
plication can be useful for financial operators, who have to deal with the
increasing quantity of qualitative information available today. By quickly
being able to enter a new template definition and extract the relevant in-
formation from a large quantity of source articles, the operators can gain
knowledge which can be extremely useful for taking appropriate financial
decisions. This knowledge would otherwise be lost due to the lack of time
of the financial operator.

25

References

[Chinchor and Dungca, 1995] N. Chinchor and G. Dungca, “The Scoring
Method for MUC-6", in Sizth Message Understanding Conference (MUC-
6), Morgan Kaufmann, November 1995.

[Cho et al., 1999] V. Cho, B. Wuethrich, and J. Zhang, “Text Processing
for Classification”, Journal of Computational Intelligence in Finance, 7
No.2:6-22, 1999.

[Collier, 1994] R. Collier, “N-gram cluster identification during empirical
knowledge representation generation”, in Proceedings of the Fifteenth
International conference on Computational Linguistics, pages 1054-1058,
1994.

[Collier, 1996] R. Collier, “Automatic template creation for information
extraction, an overview”, Technical report, University of Sheffield, 1996.

[Costantino et al., 1996a] M. Costantino, R. J. Collingham, and R. G. Mor-
gan, “Financial Information Extraction at the University of Durham”,
in Proceedings of the II Meeting of Artificial Intelligence in Accounting,
Finance and Taz, University of Huelva, Spain, September 1996.

[Costantino et al., 1996b] M. Costantino, R. J. Collingham, and R. G. Mor-
gan, “Information Extraction in the LOLITA System using Templates

from Financial News Articles”, in Information Technology Interfaces ’96,
June 1996.

[Costantino et al., 1996¢c] M. Costantino, R. J. Collingham, and R. G. Mor-
gan, “Natural Language Processing in Finance”, The Magazine of Arti-
ficial Intelligence in Finance, 2 No.4, 1996.

[Costantino et al., 1996d] M. Costantino, R. J. Collingham, and R. G. Mor-
gan, “Qualitative Information in Finance: Natural Language Processing
and Information Extraction”, Neuro Ve$t Journal, 4 No.6, November 1996.

[Costantino et al., 1997] M. Costantino, R. G. Morgan, R. J. Collingham,
and R. Garigliano, “Natural Language Processing and Information Ex-
traction: Qualitative Analysis of Financial News Articles”, in Proceedings

of the Conference on Computational Intelligence for Financial Engineer-
ing (CIFEr °97), March 1997.

26

[DAR, 1991] DARPA, Proceedings of the Third Message Understanding
Conference (MUC-3), Morgan Kaufmann Publishers, May 1991.

[DAR, 1992] DARPA, Proceedings of the Fourth Message Understanding
Conference (MUC-/), Morgan Kaufmann Publishers, June 1992.

[DAR, 1993] DARPA, Proceedings of the Fifth Message Understanding Con-
ference (MUC-5), Morgan Kaufmann Publishers, August 1993.

[DAR, 1995] DARPA, Proceedings of the Sizth Message Understanding
Conference (MUC-6), Morgan Kaufmann Publishers, November 1995.

[Garigliano et al., 1993] R. Garigliano, R. G. Morgan, and M. H. Smith,
“The LOLITA System as a Contents Scanning Tool”, in Awignon 93,
1993.

[Garigliano, 1995] R. Garigliano, “Editorial”, Natural Language Engineer-
ing, 1, March 1995.

[Grishman, 1995] R. Grishman, “Tipster Phase IT Architecture Design Doc-
ument (Tinman Architecture)”, 1995.

[Krupka, 1995] G. R. Krupka, “SRA: Description of the SRA System as
Used for MUC-6", in Proceedings of the Sizth Message Understanding
Conference, Morgan Kaufmann Publishers, November 1995.

[Rijsbergen, 1979] C. J. V. Rijsbergen, Information Retrieval 2nd Edition,
Butterworths, 1979.

[Smith et al., 1994] M. H. Smith, R. Garigliano, and R. G. Morgan, “Gen-
eration in the LOLITA system: An Engineering Approach”, in 7th Inter-
national NL Generation Workshop, June 1994.

[Sowa, 1984] J. F. Sowa, Conceptual Structures, information processing in
mind and machine, Addison-Wesley, 1984.

[Wang and Garigliano, 1992] Y. Wang and R. Garigliano, “Detection and
Correction of Transfer by CAL”, in Second International Conference on
Intelligent Tutoring Systems (ITS-92), Sprinter-Verlag, June 1992.

27

